王涵课题组介绍
王涵,助理教授、研究员、博导 通讯地址:物质学院8号楼305室 | SPST 8-305 电子邮件:wanghan3@shanghaitech.edu.cn 个人简历: 2007-2011 吉林大学, 学士|Jilin University, BS 2011-2017 美国伦斯勒理工, 博士 (导师:Prof. Shengbai Zhang 张绳百教授)|Rensselaer Polytechnic Institute (RPI), PhD 2018-2021 劳伦斯伯克利国家实验室, 博士后(导师:Dr. David Prendergast)|Lawrence Berkeley National Laboratory (Berkeley Lab), Postdoc 2021-2022 SUNCAT, SLAC国家加速器实验室, 助理研究员|SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Research Associate 2022- 上海科技大学, 助理教授、研究员|ShanghaiTech University, Assistant Professor/PI |
课题组致力于从第一性原理出发,开发并运用尖端的理论计算方法(如DFT, TDDFT, FSSH等)与机器学习技术,以揭示光与物质在最基本量子层面上的相互作用机理。我们旨在通过深刻的理论洞察和强大的计算模拟,精确预测并理解复杂量子体系的动态行为,为理解新奇量子现象提供坚实的理论基础 具体方向包括:1.超快过程的理论模拟:探索阿秒至皮秒时间尺度上的电子与原子协同演化,构建能够直观展现分子与固体材料(例如拓扑材料、低维材料)中超快过程的“分子电影”;2.X射线光谱模拟与应用:开发先进的X射线光谱计算方法,结合自由电子激光实验结果,揭示先进功能材料在催化与相变过程中的关键电子结构与超快机理;3.EUV光刻胶研究:阐明EUV光刻胶的工作机理,并开展高性能材料的理论筛选与设计。 我们的研究高度交叉,深度融合了量子力学、凝聚态物理、分子动力学模拟和物理化学。如果你拥有扎实的理论与数学功底,并对通过计算解决凝聚态物理与化学中的前沿科学问题充满热情,我们诚挚地邀请你加入我们,共同探索原子尺度下的奇妙世界 课题组长王涵教授已入选上海市领军人才项目。 本课题组长期诚聘助理研究员、博士后研究员、硕博研究生。欢迎具有物理、化学、材料等相关专业背景, 对第一性原理计算、非平衡量子动力学理论或光谱学理论模拟感兴趣的学生和学者加入!同时也欢迎感兴趣的本科生参与到我们的科研工作中来!有意者请邮件联系。 |
课题组论文 ∣ Pubilcations at ShanghaiTech
10. J. Li, Z. Wang, and H. Wang†, Computational Study of Organotin Oxide Systems for Extreme Ultraviolet Photoresist, J. Phys. Chem. A 129, 1420 (2025).
9. R. Wang, Q. Liu, S. Dai, C.-M. Liu, Y. Liu, Z.-Y. Sun, H. Li, C.-J. Zhang, H. Wang†, C.-Y. Xu, W.-Z. Shao, A. J. Meixner, D. Zhang, Y. Li, and L. Zhen, Defect Emission and Its Dipole Orientation in Layered Ternary Znln2S4 Semiconductor, Small 20, 2305658 (2024).
8. X. Hu, Z.-H. Li, Z.-H. Li, J.-R. Fu, H. Wang†, Y.-Q. Geng, L. Zhen, Y. Li, and C.-Y. Xu, Reconfiguring the Optical Selection Rule in Ultramicrotome-Crafted Vertically Aligned InSe Ribbons, Adv. Opt. Mater. 12, 2400700 (2024).
7. Y.-R. Yin, H. Wang, Y.-Q. Yang, X. Hai, Z.-H. Li, C.-L. Ren, and P. Huai, Surface properties of non-passivated nickel-based alloys in H2O-bearing environments by theoretical calculations: Atomic modification effects from alloying additions, J. Appl. Phys. 135, 205301 (2024).
6. 朱瑞雪, 周坤,李冰, 戴晟, 王涵, 翁祖谦, 自由电子激光在光化学研究领域中的应用, 自然杂志 46, 221 (2024).
5. 刘伟民, 李润泽,彭鹏, 戴晟, 李祯辉, 王涵, John Andrew McGuire, 跨入X射线波段:超快和非线性光谱学的研究进展, 自然杂志 46, 173 (2024).
4. K. Zhou and H. Wang†, Core-Level Spectroscopy of the Photodissociation Process of BrCN Molecule, Chinese Physics B,33,18702 (2024).
3. H. Wang†, G. M. Su, B. R. Barnett, W. S. Drisdell, J. R. Long, and D. Prendergast, Understanding 2p Core-Level Excitons of Late Transition Metals by Analysis of Mixed-Valence Copper in a Metal–Organic Framework, Phys. Chem. Chem. Phys. 26, 11980 (2024).
2. M. Ciesler, H. Wang, S. Zhang, and D. West, Ultrafast Charge Transfer Enhancement in CdS–MoS2 via a Linker Molecule, J. Phys. Chem. C 127, 19668 (2023).
1. H. Ogasawara, H. Wang, J. Gladh, A. Gallo, R. Page, J. Voss, A. Luntz, E. Diesen, F. Abild-Pedersen, A. Nilsson, M. Soldemo, M. Zajac, A. Attar, M. E. Chen, S. W. Cho, A. Katoch, K.-J. Kim, K. H. Kim, M. Kim, S. Kwon, S. H. Park, H. Ribeiro, S. Sainio, H.-Y. Wang, C. Yang, and T. Heinz, X-Ray Free Electron Laser Studies of Electron and Phonon Dynamics of Graphene Adsorbed on Copper, Phys. Rev. Mater. 7, 24005 (2023).
加入上科大前发表的论文 ∣ Publications before joining ShanghaiTech
1. H. Wang, J. Bang, Y.Y. Sun, L. Liang, D. West, V. Meunier, and S. Zhang, The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures, Nature Commun. 7, 11504 (2016).
2. H. Wang, Z. Qiu, W. Xia, C. Ming, Y. Han, L. Cao, J. Lu, P. Zhang, S. Zhang, H. Xu, and Y.Y. Sun,Semimetal or semiconductor: the nature of high intrinsic electrical conductivity in TiS2, J. Phys. Chem. Lett. 10, 6996 (2019).
3. H. Wang, M. Odelius, D. Prendergast, A combined multi-reference pump-probe simulation method with application to XUV signatures of ultrafast methyl iodide photodissociation, J. Chem. Phys. 151, 124106 (2019).
4. G. Su*, H. Wang* (共同一作), B. Barnett, J. Long, D. Prendergast, and W. S. Drisdell, Backbonding Contributions to Small Molecule Chemisorption in a Metal–Organic Framework with Open Copper(I) Centers, Chem. Sci. 12, 2156 (2021). (第一理论作者)
5. J. Ma*, H. Wang* (共同一作), S. Nie*, C. Yi, Y. Xu, H. Li, J. Jandke, W. Wulfhekel, Y. Huang, D. West, P. Richard, A. Chikina, V.N. Strocov, J. Mesot, H. Weng, S. Zhang, Y. Shi, T. Qian, M. Shi, and H. Ding, Emergence of nontrivial low‐energy Dirac fermions in antiferromagnetic EuCd2As2, Adv. Mater. 32, 1907565 (2020). (第一理论作者)
6. J. Chai*, Z. Shao*, H. Wang* (共同一作), C. Ming, W. Oh, T. Ye, Y. Zhang, X. Cao, P. Jin, S. Zhang, and Y.Y. Sun, Ultrafast processes in photochromic material YHxOy studied by excited-state density functional theory simulation, Sci. China Mater. 63, 1579 (2020).
7. S. Lei*, H. Wang* (共同一作), L. Huang, Y.Y. Sun, and S. Zhang, Stacking fault enriching the electronic and transport properties of few-layer phosphorenes and black phosphorus, Nano Lett. 16, 1317 (2016).
8. Y. Li*, T. Wang*, H. Wang* (共同一作), Z. Li, Y. Chen, D. West, R. Sankar, R. Ulaganathan, F. Chou, C. Wetzel, C. Xu, S. Zhang, S. Shi, Enhanced light emission from the ridge of two-dimensional InSe flakes, Nano Lett. 18, 5078 (2018). (第一理论作者)
9. M. Guo, X. Liang, H. Wang†(通信作者), and J. Zhang†, Magnetic anisotropy of iridium dimer on two-dimensional materials, Phys. Chem. Chem. Phys. 22, 238 (2020).
10. K. Cheng, M. Wang, S. Wang, N. Liu, J. Xu, H. Wang†(通信作者), and Y. Su†, Monolayer Sc2CF2 as a Potential Selective and Sensitive NO2 Sensor: Insight from First-Principles Calculations, ACS Omega 7, 9267 (2022).
11. C. Ming, H. Wang, D. West, S. Zhang, and Y. Y. Sun, Defect Tolerance in CsPbI3: Reconstruction of the Potential Energy Landscape and Band Degeneracy in Spin-Orbit Coupling, J. Mater. Chem. A 10, 3018 (2022).
12. X. Wu, C. Ming, W. Gao, J. Shi, K. Zhao, H. Wang, and Y. Y. Sun, Effect of Liquidlike Cations on Electronic and Defect Properties of Solid Solutions of Cu2Te and Ag2Te, Phys. Rev. B 105, 1 (2022).
13. J. H. Ma, C. Needham, H. Wang, A. Neureuther, D. Prendergast, and P. Naulleau, Mechanistic Advantages of Organotin Molecular EUV Photoresists, ACS Appl. Mater. Interfaces 14, 5514 (2022).
14. X. Wu, C. Ming, J. Shi, H. Wang, D. West, S. Zhang, and Y.-Y. Sun, Defects in Statically Unstable Solids: The Case for Cubic Perovskite α-CsPbI3, Chinese Phys. Lett. 39, 46101 (2022).
15. K. F. Chang, H. Wang, S. M. Poullain, J. González-Vázquez, L. Bañares, D. Prendergast, D. M. Neumark, and S. R. Leone, Conical Intersection and Coherent Vibrational Dynamics in Alkyl Iodides Captured by Attosecond Transient Absorption Spectroscopy, J. Chem. Phys. 156, 114304 (2022).
16. M. Ge, H. Wang, J. Wu, C. Si, J. Zhang, and S. Zhang, Enhanced Valley Splitting of WSe2 in Twisted van Der Waals WSe2/CrI3 Heterostructures, npj Comput. Mater. 8, 32 (2022).
17. R. Besse, H. Wang, D. West, J. L. F. Da Silva, and S. Zhang, Prediction of Effective Photoelectron and Hole Separation in Type-I MoS2/PtSe2 van der Waals Junction, J. Phys. Chem. Lett. 13, 6407 (2022).
18. K. F. Chang, H. Wang, S. M. Poullain, D. Prendergast, D. M. Neumark, and S. R. Leone, Mapping Wave Packet Bifurcation at a Conical Intersection in CH3I by Attosecond XUV Transient Absorption Spectroscopy, J. Chem. Phys. 154, 234301 (2021).
19. K. Chang, M. Reduzzi, H. Wang, S. Poullain, Y. Kobayashi, L. Barreau, D. Prendergast, D. Neumark, and S. Leone, Revealing electronic state-switching at conical intersections in alkyl iodides by ultrafast XUV transient absorption spectroscopy, Nat. Commun. 11, 4042 (2020).
20. K. Cheng, H. Wang, J. Bang, D. West, J. Zhao and S. Zhang, Carrier Dynamics and Transfer across the CdS/MoS2 Interface upon Optical Excitation, J. Phys. Chem. Lett., 11, 6544 (2020).
21. J. Ma, H. Wang, D. Prendergast, A. Neureuther, and P. Naulleau, Excitation Selectivity in Model Tin-Oxo Resist: A Computational Chemistry Perspective, in Extreme Ultraviolet (EUV) Lithography XI, edited by N. M. Felix and A. Lio, SPIE, 11323, 349–355 (2020).
22. C. Si, D. Choe, W. Xie, H. Wang, Z. Sun, J. Bang, and S. Zhang, Photoinduced vacancy ordering and phase transition in MoTe2, Nano Lett. 19, 3612 (2019).
23. J. Ma, H. Wang, D. Prendergast, A. Neureuther, and P. Naulleau, Investigating EUV radiation chemistry with first principles quantum chemistry calculations. Proc.SPIE 11147, (2019).
24. B.W. Toulson, M. Borgwardt, H. Wang, F. Lackner, A.S. Chatterley, C.D. Pemmaraju, D.M. Neumark, S.R. Leone, D. Prendergast, and O. Gessner, Probing ultrafast C–Br bond fission in the UV photochemistry of bromoform with core-to-valence transient absorption spectroscopy, Struct. Dyn. 6, 54304 (2019).
25. M. Ge, Y. Su, H. Wang, G. Yang, and J. Zhang, Interface depended electronic and magnetic properties of vertical CrI3/WSe2 heterostructures, RSC Adv. 9, 14766 (2019).
26. C. Zhong, Y. Chen, Z.-M. Yu, Y. Xie, H. Wang, S.A. Yang, and S. Zhang, Three-dimensional pentagon carbon with a genesis of emergent fermions, Nature Commun. 8, 15641 (2017).
27. Q. Peng, X. Sun, H. Wang, Y. Yang, X. Wen, C. Huang, S. Liu, and S. De, Theoretical prediction of a graphene-like structure of indium nitride: A promising excellent material for optoelectronics, Appl. Mater. Today 7, 169 (2017).
28. Y. Chen, Y.Y. Sun, H. Wang, D. West, Y. Xie, J. Zhong, V. Meunier, M.L. Cohen, and S. Zhang, Carbon kagome lattice and orbital-frustration-induced metal-insulator transition for optoelectronics, Phys. Rev. Lett. 113, 85501 (2014).
29. D. West, Y.Y. Sun, H. Wang, J. Bang, and S. Zhang, Native defects in second-generation topological insulators: Effect of spin-orbit interaction on Bi2Se3, Phys. Rev. B 86, 121201 (2012).
本组成员 |
|
| ||||
|
| ||||
|
| ||||
|
| ||||
|
Alumni |
|
|
姓名 | 去向/现状 |
---|---|
刘泽阳 | 2022-2025 材料科学与工程 工程硕士 超威半导体(上海)有限公司 |
贾西宁 | 2022-2025 材料科学与工程 工程硕士 上海艾普强粒子设备有限公司 |
本科生去向情况 |
姓名 | 去向/现状 |
---|---|
王者风 2022-2024 | 上海科技大学读研 |
王语嫣 2023 | 复旦哲学院读研 |
万轩麟 | 上科大本科在读 |
陶毅远 | 上科大本科在读 |
开设课程:
数据驱动的物质科学研究(本研一体课,SP2006,3学分) 2024春季(39人),2025春季(51人)
人工智能与材料科学 (本科生,MSE1705,2学分) 2025秋季(31人)
光学实验 (本科生,PHYS1311,1学分) 2022(33人),2023(45人),2024秋季(53人)
在研项目:
青年科学基金项目(C类)[原青年科学基金项目], 12404277